Ta strona używa plików cookies.
Polityka Prywatności
RODO    Informacje o cookies
AKCEPTUJĘ

Funkcja wykładnicza

Ciekawa funkcja w matematyce

Funkcja wykładnicza to pojęcie, które brzmi jak niesamowicie trudne do zrozumienia. Cóż może kryć się pod pojęciem funkcji wykładniczej? Na szczęście, definicja tego pojęcia jest znacznie łatwiejsza niż by się wydawało. Funkcja wykładnicza ma bardzo prosty wzór f(x) = a^x, przy czym nasze a musi być większe od zera, a zatem spełniony musi być warunek, że a > 0.

Nazwa, intrygująca i może nieco stresująca początkującego studenta matematyki, wzięła się od tego, że x znajduje się w wykładniku.
Ciekawostką jest fakt, że wykresem naszej funkcji jest taka krzywa, która bez względu na wszystko – zawsze przecina oś y w punkcie 1. Jednak, w zależności od tego, czy a jest większe od 1, czy mniejsze, może wyglądać na odwróconą.

Dziedziną każdej funkcji wykładniczej jest zbiór liczb rzeczywistych R, a jej zbiorem wartości są wszystkie liczby dodatnie i rzeczywiste.

Wykres, który otrzymujemy na podstawie funkcji wykładniczej, nazywany jest krzywą wykładniczą.
Funkcja wykładnicza posiada szereg własności, czyli właściwości. Po pierwsze, jej dziedzina to zbiór liczb rzeczywistych. Po drugie, do zbioru wartości należą tylko liczby dodatnie. Po trzecie, funkcja może być malejąca albo rosnąca. Generalnie, funkcja jest różnowartościowa. Wartością dla argumentu zerowego jest 1. Wykres NIE JEST linią prostą.

Wbrew pozorom, matematyka nie jest trudną dziedziną i można się jej nauczyć. Najlepiej, kiedy się ćwiczy, bo jak powiadają, praktyka czyni mistrza. Warto jest poszukać ciekawych zadań z rozwiązaniami w internecie, żeby poćwiczyć swoją umiejętność obliczania funkcji wykładniczej. Po kilku takich przykladach okaże się, że doskonale opanowałeś materiał. A jest to jedna z tych rzeczy, które mogą przydać Ci się na studiach, jeżeli kiedyś będziesz myślał o karierze, którą aktualnie wybrał Twój nauczyciel.

Jeżeli wciąż masz problemy ze zrozumieniem, czym jest funkcja wykładnicza, warto przeczytać kilkukrotnie ten tekst - przykłady wykresów pozwolą Ci lepiej zrozumieć to zagadnienie i rozwiązać wszelkie zadania.

4

dziedziny naukowe

30

Ciekawych artykułów

10050

Zadowolonych użytkowników serwisu

3000

Wymienionych maili z naszymi użytkownikami :-)